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Direct measurement of multiple instability regions via a Fourier filtering method in an optical
pattern forming system

M. Pesch,* E. Große Westhoff,† T. Ackemann,‡ and W. Lange§

Institut für Angewandte Physik, Westfa¨lische Wilhelms-Universita¨t Münster, Corrensstrasse 2/4, D-48149 Mu¨nster,
Federal Republic of Germanyi

~Received 19 February 2003; published 14 July 2003!

We determine the limits of stability of the homogeneous state of a pattern forming optical system in
dependency on the wave number by experimental means. The measurement becomes feasible by adopting a
scheme based on a Fourier filtering technique. The system under study is a single-mirror feedback arrangement
using sodium vapor as the nonlinear medium. The experiment confirms the existence of multiple instability
regions of the homogeneous state expected by theory. The measurements do not agree quantitatively with the
marginal stability curve determined by a linear stability analysis of an infinitely extended homogeneous
system. We study the system numerically and demonstrate that the results of the simulations for the case of a
Gaussian beam can be reproduced by a simple modification of the linear stability analysis which accounts for
the finite diameter of the input beam. This explains the wave number dependent systematic deviations between
the experiment and the linear stability analysis of the infinitely extended system.
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I. INTRODUCTION

An important feature of pattern forming dissipative sy
tems are the threshold values of the stress parameter at w
different spatially inhomogeneous modes arise sponta
ously from the homogeneous state. The emerging struct
are commonly studied in the Fourier space, where exten
patterns are represented by only a few well defined mo
@1,2#. Typically, at threshold of the pattern forming instabili
the homogeneous state becomes unstable against Fo
modes with a well defined wave number. Interesting sit
tions arise if the homogeneous state can become uns
versus multiple different instabilities with different critica
wave numbers. Such a situation and the resulting comp
dynamics were analyzed experimentally and/or theoretic
in nonlinear optical systems@3–8#, in directional solidifica-
tion @9#, in the Taylor-Dean instability@10# and in the Fara-
day instability@11–15#. This list presents only some typica
examples and is far from being complete.

If a good model of the experimental situation is at han
the different instabilities and their boundaries can be
tained by a linear stability analysis~LSA! of the homoge-
neous state. In contrast, anexperimentaldetermination of the
linear stability of the homogeneous state in dependency
the wave number of the perturbation, is difficult in gener
Beyond the threshold of pattern formation a structure wit
well defined wave number has already formed and no st
ment on the stability of other wave numbers can be giv
We are not aware of previous measurements of the comp
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set of marginal stability curves in dependency on the wa
number, whereas the Busse balloon—i.e., the subrang
wave numbers allowing for stable patterns~e.g., Ref.@16#!—
can be accessed by a suitable use of boundary effects@17# or
initial conditions@18#.

In this paper, we will demonstrate a method giving dire
experimental access to the instability boundaries in dep
dency on the wave number. It is based on the selection o
arbitrary wave number by suppressing all other modes w
lower threshold. This is achieved by filtering methods in t
Fourier space. It turns out that the marginal stability curv
in a finite system differ from the ones predicted by a line
stability analysis of the infinitely extended homogeneo
state—as it might have been expected beforehand, of cou
The differences between the two cases will be analyz
Again, it will prove to be enlightening as we can check t
consequences in a wide range of wave numbers.

In optics, the Fourier space is directly observable and
cessible, since the distribution of a light field in the foc
plane of a lens is given by the Fourier transform of the lig
field in front of the lens. Moreover, by introducing a s
called Fourier filter, which is a combination of two lens
and an aperture, it is possible to manipulate the proces
pattern formation directly in the Fourier space. This tec
nique has been widely used to control, steer, and analyze
pattern selection in nonlinear optics@19–24#. In this paper,
we use a suitably designed filter in order to analyze the lin
stability of the unstructured state in an optical pattern for
ing system.

II. EXPERIMENT

A. Experimental setup

The system under study belongs to the well known cl
of single-mirror feedback arrangements@25,26#. In this case,
it is based on sodium vapor as the nonlinear medium
scheme of the experimental setup is shown in Fig. 1. T

-
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output of a cw dye laser, which is operating at a frequen
some linewidths above the sodium-D1 line, is being spatially
filtered by use of a single-mode fiber. The near-Gauss
output of the fiber is collimated. By means of a 1:1 telesco
~T! the beam parameters are adjusted such that the w
front is plane inside the sodium vapor~radius of curvature
R.100 m, 1/e2 radius of the intensity in the beam wai
w051.37 mm). A circular polarization of light is generate
by transmission through a linear polarizer and a quarter-w
plate. The laser beam is injected into a heated cell~SC! con-
taining sodium vapor in a N2 buffer gas atmosphere. Th
buffer gas provides a strong homogeneous broadening o
D1 transition which masks both the hyperfine splitting a
the Doppler broadening.

Feedback is provided by the feedback mirror~M, reflec-
tivity R599%) that is placed at a distance 4f 1d behind the
sodium cell. Due to the quarter-wave plate between the
and the mirror, the forward and backward beams have op
site helicities. The Fourier filter in the feedback loop consi
of two lenses in a 4f alignment. In the common focal plan
of the lenses, the Fourier transform of the distribution of
field behind the sodium cell can be manipulated by the
sertion of a transmission filter. The light transmitted throu
the feedback mirror is used for detection. The intensity d
tribution of the transmitted field behind the sodium cell a
its optical Fourier transform are imaged onto two char
coupled device~CCD! cameras.

B. Experimental results

The functionality of the transmission filter used in th
experiment is illustrated in Fig. 2. Hexagons, which occur
the system without a filter, are replaced by stripes, wh
have the same threshold and wave number, if a slit filte
introduced in the Fourier space~cf. also Ref.@23#!. Since
every component in the Fourier space is also accompa
by its complex conjugate, it is sufficient to use a half-pla
filter instead of a slit@Figs. 2~c!, 2~g!, and 2~k!#. The filter is
positioned in order to allow the transmission of the ze
order mode~minimum cutoff frequencyqcut'3.6 mm21

corresponding to about 2.5 times the 1/e2-intensity radius of
the input beam at that position! and to achieve a horizonta
orientation of the stripe pattern. Wave number selection
realized by a slit filter oriented perpendicular to the edge
the half plane@cf. Fig. 2~d!#. The slit is implemented in the
form of two wires of variable width, which can be moved
the vertical direction. The width of the wires has to be ca
fully chosen in order to select a certain band of wave nu

FIG. 1. Scheme of experimental setup. T stands for telesc
LP for linear polarizer, QW for quarter-wave plate, SC for sodiu
cell, L for lens, FF for Fourier filter, M for mirror, and CCD fo
charge-coupled device camera.
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bers available for pattern formation, while suppressing
instability of all other wave numbers, which may have
lower threshold, and leaving the zero-order mode unaffec
Having selected a wave number, the threshold can be d
mined by increasing the laser power until a stripe patt
occurs. Once the pattern has developed, it remains stab
the laser power is increased further.

The experimentally obtained threshold in dependency
the wave number is depicted in Fig. 3. The result shows th
clearly separated regions in which stripes occur. These
called instability regions are separated by bands of w
numbers where the unstructured state is still observed for
maximum input power available. We interpret the boundar
of the instability regions as the marginal stability curve f
the unstructured state. The minima of each curve define
critical wave number and critical pump power for the thres
old of each instability region. Within each instability regio
the shape of the marginal stability curve is approximat
parabolic. The threshold for each instability region increa
with increasing critical wave number. We will label the in

e,

FIG. 2. Sequence of images demonstrating the method use
select stripe patterns with a chosen wave number. Upper row:
tering aperture, black denotes opaque parts and white transp
parts; dashed circles denote the position of the Fourier mo
Middle row: near field intensity distributions. Lower row: far fiel
intensity distributions~zero-order mode suppressed!. Parameters:
pN2

5309 hPa, T5311.4 °C, D518 GHz, d577 mm, ~e! P0

5160 mW, ~f! P0550 mW, ~g! P0545 mW, ~h! P05187 mW.

FIG. 3. Experimentally observed instability regions. The dott
line connects the origin with the minimum of the first instabili
region ~see text!. Parameters:T5316.7 °C, d577 mm, pN2

5306 hPa, andD55.4 GHz.
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stability regions as regions 1, 2, and 3 starting at low wa
numbers.

III. THEORETICAL ANALYSIS

A. Microscopic model

The theoretical analysis for the system under consid
ation is based on the microscopic model for the interaction
sodium vapor with light~cf. Ref. @27#!. The origin of the
nonlinearity of the sodium vapor is optical pumping that p
duces a so-called orientationw, which is proportional to the
longitudinal component of the magnetization of the sodi
atoms, i.e., of the component in the direction of the la
beam. The properties of the transmitted light are governed
the longitudinally averaged orientation f(x,y)
5*0

Lw(x,y,z)dz @28#, which determines the complex su
ceptibility

x65x lin~17f!52
NNaumu2

2e0\G2
S D̄1 i

D̄211
D ~17f!.

x lin denotes the linear susceptibility of the vapor,NNa is the
particle number density of the sodium atoms, andmM
51.72310229 C m is the dipole matrix element of the tran
sition. D̄52pD/G2 is the detuningD5n laser2nD1

of the la-

ser beam with respect to the sodium-D1 line normalized to
the transverse relaxation rateG2, i.e., the relaxation rate o
the dipole moment of the transition. The linear absorpt
coefficient of the vapor is given by 2a0ª2k0Im(x l in).

Under the given experimental conditions, the sodium-1
line can be modeled as a homogeneously broadenedJ5 1

2

→J85 1
2 -transition with a negligible population of the ex

cited state@29#. In this case, the equation of motion for th
longitudinally averaged orientation is given by@27#

]f

]t
52gf1DD'f1

1

2a0L
$@P1, f~0!2P1, f~L !#

2@P2,b~L !2P2,b~0!#%. ~1!

The pump ratesP6, f /b(0,L) of the forward and backward
propagating beams are calculated at the entrance (z50) and
the exit (z5L) of the medium from the corresponding com
ponents of the electric field amplitudes:

P65
3

16

umu2

4G2\2~D̄211!
uE6u2. ~2!

The amplitudes of the electrical fields are connected by
transmission through the medium,

E1, f~L !5exp@2a0L~12 i D̄ !~12f!#E1, f~0!, ~3!

E2,b~0!5exp@2a0L~12 i D̄ !~11f!#E2,b~L !, ~4!

and by the free-space propagation
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E6,b~L !5R expS 2
id

k0
D'DE7, f~L !. ~5!

In addition, Eq.~5! takes into account the exchange of t
polarization components by the quarter-wave plate and
losses due to reflection.

B. Linear stability analysis

The stationary homogeneous solution of Eqs.~1!–~5! is
given by an implicit formula for the orientation, which i
solved numerically:

2a0Lgf05P0@12e22a0L(12f0)2Re22a0L(12f0)

3~12e22a0L(11f0)#. ~6!

The stability of the solution of Eq.~6! against perturbations
of the formdf;emt1 iqW •rW' is determined by the growth ex
ponentm of the perturbation, which is

m52g2Dq22P0e22a0L(12f0)~11Re22a0L(11f0)!

2RP0e22a0L(12f0)~12e22a0L(11f0)!FcosS dq2

k0
D

1D̄sinS dq2

k0
D G .

The curve of marginal stability, which is given bym
50, is depicted as a solid line in Fig. 4. Below the curve t
linear growth exponent is negative, the homogeneous ste
state is stable. Above the curve it is unstable.

The result of the linear stability analysis predicts the e
istence of multiple instability regions. This is expected f
single-mirror feedback experiments because of the spa
periodicity of the Talbot effect@25,30,31#. The experimen-
tally observed boundaries of the instability regions show
good qualitative agreement with the marginal stability cur

FIG. 4. Solid line represents linear stability analysis, diamon
plane wave simulations, triangles Gaussian beam simulat
~pump rate given in the beam center!, horizontal lines 1/Ae radius
of the Fourier mode, dashed line analytical approximation
Gaussian beam, see discussion below, and the dotted line con
the origin with the minimum of the first instability region of th
linear stability analysis~see text!. Parameters:g51.5 s21, G2

510.453109 s21, D̄53.248, D5232.27 mm2 s21, N52.3
31019 m23, L515 mm, d577 mm, andR599%.
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Both show an increased damping of the higher-order in
bilities, which results from diffusion@25,32#.

The threshold pump power for a beam with a radius
1.37 mm and the critical threshold pump rate as determi
from the LSA~Fig. 4! amounts to 44 mW, 109 mW, and 17
mW for the three instability regions. This is of the sam
order of magnitude as the experimental values~28 mW, 79
mW, and 140 mW, see Fig. 3!. Also, the experimentally ob
served wave numbers show a reasonable good agree
with the LSA ~see Figs. 4 and 3!. A complete agreement o
the absolute values cannot be expected, since the conve
of experimental values to model parameters underlies s
uncertainties. For example, the change of the pumping
ciency due to hyperfine splitting is only accounted for by
constant factor„3/16 in Eq.~2!, Ref. @33#…. Some deviations
in the wave numbers are expected due to uncertainties in
determination of the effective mirror distance resulting fro
the insertion of the Fourier filter.

However, the ratios of the measured critical wave nu
bers are in good agreement with the prediction of the lin
stability analysis. In contrast, the relative thresholds of
instabilities do not match the expectation from the line
stability analysis: The ratio of the threshold of the seco
region to the one of the first is 2.8 in the experiment, wher
it is 2.5 in the LSA. The corresponding numbers for the th
region are 5.0~experiment! and 3.9 ~LSA!. These figures
indicate that there is some additional damping for hig
wave numbers. This fact is also illustrated by the lines ad
to the Figs. 4 and 3: Whereas in the data obtained from
LSA a straight line connecting the origin with the minimu
of the first region intersects the two other minima with a hi
precision~Fig. 4!, this is clearly not the case in the expe
ment ~Fig. 3!.

C. Numerical results

One questionable assumption made in the analysis is
one of a homogeneous profile of the laser beam. Whil
plane wave input is assumed in the linear stability analy
the experiment is performed with a Gaussian beam. Fo
more detailed analysis, numerical simulations were p
formed with a Gaussian input beam and a plane wave.

By means of Fourier filtering a stripe pattern with a ce
tain wave number was selected analogous to the exp
ments. The threshold was determined by a step-by-step
crease of the pump rate with a resolution of<1% of the
threshold value. The results of the simulations are show
Fig. 4. As expected, the simulations with a plane wave in
reproduce the predictions of the linear analysis within
used precision. For a Gaussian input beam, as it is use
the experiment, the threshold for pattern formation is sign
cantly higher. This observation is often explained by the
tuitive assumption that a region with an extent of at le
some wavelengths of the pattern has to be above thres
for the development of a structure. In this case, the devia
should be less pronounced for the higher-order instab
regions, since the aspect ratio increases with increasing w
number. Obviously, the contrary is true. Therefore, a m
refined model has to be considered.
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D. Influence of finite size effects

A typical distribution of the orientationf obtained in a
numerical simulation with a Gaussian beam slightly abo
threshold is shown in Fig. 5. Stripe patterns occur in a cer
region in the center of the beam. Their wavelengths are sm
compared to the extent of the nearly homogeneous pla
present in the beam center~between abouty522.5 mm and
y52.5 mm). This observation suggests a two-scale an
for the orientation distribution of the patterned state:

F~x!5Fh~x!1A expS 2
x2

2wF
2 D cos~q0x!. ~7!

The spatial scale 1/q0 of the pattern is separated from th
scale of the quasihomogeneous backgroundFh(x) that is
given by the orientation profile below threshold. The a
sumption of a Gaussian envelope for the amplitude of
pattern in real space is based on the observation that
Fourier components@cf. Fig. 5~d!# have a profile, which can
be very well approximated by a Gaussian distribution. T
analysis of the results of the numerical simulations indic
that the widthwF of the pattern is approximately given b
the sizeDx of the area that is above threshold. Therefore,
upper bound of the size of the pattern is then given by

wF&Dx5F2
w0

2

2
lnS Pc

P0
D G1/2

. ~8!

w0 denotes the 1/e2 radius of the Gaussian pump profile
The pump rate at the center of the beam is given byP0,
while Pc denotes the critical pump rate for the wave numb
q from the linear analysis. Inequality~8! is equivalent to a
lower bound forwq , the 1/Ae radius of the pattern’s Fourie
component

FIG. 5. Typical distribution of orientation slightly above thres
old from numerical simulation.~a! orientation,~b! vertical cut,~c!
numerically calculated Fourier transform, and~d! vertical cut
through Fourier transform.
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wq~P0!*wq,min~P0!5
1

wF
. ~9!

The area corresponding to inequality~9! is hatched vertically
in Fig. 6.

The estimate given is a lower bound for the size o
Fourier component. A mechanism providing an upper bou
can be derived from the numerical results presented in Fig
The small horizontal lines at each triangle~representing the
data points stemming from simulations with a Gaussian in
beam! denote the 1/Ae radii wq of the Fourier modes of the
stripe patterns. In the minima of the instability regions, t
size of the Fourier components agrees with the width of
curve of marginal stability at the respective pump rate. B
yond threshold, it is found that the lines representing
numerically calculated 1/Ae radii of the Fourier component
extend till the ‘‘closest’’ border of the instability regions th
are obtained from the linear analysis of the homogene
state. As a conclusion, the maximum width of a Four
mode is limited by the curve of marginal stability. Hence,
upper estimate for the width of the Fourier peaks is given

wq~P0!&wq,max~P0!5min$uq02qL~P0!u,uq02qR~P0!u%.
~10!

qL and qR denote the left and right borders of the curve
marginal stability at a given pump rateP0. The area corre-
sponding to condition~10! is hatched horizontally in Fig. 6

FIG. 6. Determination of the threshold in Gaussian beams.
planations are given in text.
-
nc

an

s.
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The lowest pump rateP0, where both criteria@Eqs. ~9!
and~10!#, are fulfilled, is the intersection point of the curve
wq,max(P0) and wq,min(P0). It determines the threshold
pump rate in a Gaussian beam and the size of the Fou
mode, and hence the size of the pattern. The results of
calculation are plotted in Fig. 4 as a dashed line for ea
instability region. The curves agree surprisingly well wi
the results obtained from the simulations with a Gauss
beam input. Also the agreement with the experimentally
termined instability regions is improved. The ratios betwe
the thresholds of the different instability regions (P2 /P1
53.0 andP3 /P155.5) are considerable closer to the valu
given in the experiment than the result of the usual lin
stability analysis. We conclude that the procedure descri
above is a suitable extension of the conventional linear
bility analysis of the homogeneous state for the case o
Gaussian input beam.

Compared with some other previous results@34,35# the
influence of the Gaussian beam is relatively weak in the s
tem under study. Essentially, it results in an increase of
threshold of pattern formation. However, in the case of sa
rable media, for which the instability regions possess an
per bound~cf., e.g., Ref.@32#!, the presented effect may re
sult in the suppression of the pattern formation.

IV. OUTLOOK

The presented experimental method is a powerful too
determine the linear stability properties of the unstructu
state. It is of interest to apply the method to systems
which a linear stability analysis is not possible, because
ther there is no reliable model available or the complexity
a model prevents analysis. In such a case, the experimen
obtained marginal stability curves provide a first insight in
the relevant length scales and possible competition betw
different instabilities. This might already give some insig
in the pattern selection process, since often some argum
can be already based on the linear stability properties~cf.
many of the papers cited in the Introduction!.
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