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Direct measurement of multiple instability regions via a Fourier filtering method in an optical
pattern forming system
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We determine the limits of stability of the homogeneous state of a pattern forming optical system in
dependency on the wave number by experimental means. The measurement becomes feasible by adopting a
scheme based on a Fourier filtering technique. The system under study is a single-mirror feedback arrangement
using sodium vapor as the nonlinear medium. The experiment confirms the existence of multiple instability
regions of the homogeneous state expected by theory. The measurements do not agree quantitatively with the
marginal stability curve determined by a linear stability analysis of an infinitely extended homogeneous
system. We study the system numerically and demonstrate that the results of the simulations for the case of a
Gaussian beam can be reproduced by a simple modification of the linear stability analysis which accounts for
the finite diameter of the input beam. This explains the wave number dependent systematic deviations between
the experiment and the linear stability analysis of the infinitely extended system.
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[. INTRODUCTION set of marginal stability curves in dependency on the wave
number, whereas the Busse balloon—i.e., the subrange of
An important feature of pattern forming dissipative sys-wave numbers allowing for stable pattefiesy., Ref[16])—
tems are the threshold values of the stress parameter at whi€an be accessed by a suitable use of boundary effecior
different spatially inhomogeneous modes arise spontandnitial conditions[18].
ously from the homogeneous state. The emerging structures In this paper, we will demonstrate a method giving direct
are commonly studied in the Fourier space, where extende@xPerimental access to the instability boundaries in depen-
patterns are represented by only a few well defined modegen_cy on the wave number. It is bas_ed on the selection of_an
[1,2]. Typically, at threshold of the pattern forming instability @"Pitrary wave number by suppressing all other modes with

the homogeneous state becomes unstable against Fourl__@Wer threshold. This is achieved by filtering methods in the
o

modes with a well defined wave number. Interesting situa- urigr_ space. It turns out that the mafg‘”"’!' stability curves
tions arise if the homogeneous state can become unstablg finite system differ from the ones predicted by a linear

versus multiple different instabilities with different critical stability analysis of the infinitely extended homogeneous

L . state—as it might have been expected beforehand, of course.
wave r_1umbers. Such a sﬁuaﬂo_n and the resulting Comp|e¥he differences between the two cases will be analyzed.
dynamics were analyzed experimentally and/or theoretmallya\gain’ it will prove to be enlightening as we can check the

in nonlinear optical system8—8], in directional solidifica- consequences in a wide range of wave numbers.

tion [9], in the Taylor-Dean instability10] and in the Fara- In optics, the Fourier space is directly observable and ac-
day instability[11-19. This list presents only some typical cessible, since the distribution of a light field in the focal
examples and is far from being complete. plane of a lens is given by the Fourier transform of the light

If a good model of the experimental situation is at handfield in front of the lens. Moreover, by introducing a so-
the different instabilities and their boundaries can be ob<called Fourier filter, which is a combination of two lenses
tained by a linear stability analysi¢# SA) of the homoge- and an aperture, it is possible to manipulate the process of
neous state. In contrast, arperimentatletermination of the pattern formation directly in the Fourier space. This tech-
linear stability of the homogeneous state in dependency onique has been widely used to control, steer, and analyze the
the wave number of the perturbation, is difficult in general.pattern selection in nonlinear opti€$9—-24. In this paper,
Beyond the threshold of pattern formation a structure with ave use a suitably designed filter in order to analyze the linear
well defined wave number has already formed and no statestability of the unstructured state in an optical pattern form-
ment on the stability of other wave numbers can be givening system.

We are not aware of previous measurements of the complete

Il. EXPERIMENT
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e.html scheme of the experimental setup is shown in Fig. 1. The
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FIG. 1. Scheme of experimental setup. T stands for telescope,
.k)

LP for linear polarizer, QW for quarter-wave plate, SC for sodium

cell, L for lens, FF for Fourier filter, M for mirror, and CCD for i) )
charge-coupled device camera.
output of a cw dye laser, which is operating at a frequency

some linewidths above the sodiud line, is being spatially
filtered by use of a single-mode fiber. The near-Gaussian FIG. 2. Sequence of images demonstrating the method used to
output of the fiber is collimated. By means of a 1:1 telescopeselect stripe patterns with a chosen wave number. Upper row: fil-
(T) the beam parameters are adjusted such that the wa\ering aperture, black denotes opaque parts and white transparent
front is plane inside the sodium vap@adius of curvature parts; dashed circles denote the position of the Fourier modes.
R>100 m, 1£? radius of the intensity in the beam waist _Middle_ row: near _field intensity distributions. Lower row: far field
Wo=1.37 mm). A circular polarization of light is generated intensity distributions(zero-order mode suppres3edParameters:
by transmission through a linear polarizer and a quarter-waven, =309 hPa, T=311.4°C, A=+8 GHz, d=77 mm, () P,
plate. The laser beam is injected into a heated (&) con- =160 mW, (f) Po=50 mW, (g) Po=45 mW, (h) Po=187 mW.
taining sodium vapor in a Nbuffer gas atmosphere. The
buffer gas provides a strong homogeneous broadening of tHeers available for pattern formation, while suppressing the
D, transition which masks both the hyperfine splitting andinstability of all other wave numbers, which may have a
the Doppler broadening. lower threshold, and leaving the zero-order mode unaffected.
Feedback is provided by the feedback mir(bt, reflec-  Having selected a wave number, the threshold can be deter-
tivity R=99%) that is placed at a distancé-4d behind the ~mined by increasing the laser power until a stripe pattern
sodium cell. Due to the quarter-wave plate between the cefccurs. Once the pattern has developed, it remains stable if
and the mirror, the forward and backward beams have oppdhe laser power is increased further.
site helicities. The Fourier filter in the feedback loop consists The experimentally obtained threshold in dependency on
of two lenses in a # alignment. In the common focal plane the wave number is depicted in Fig. 3. The result shows three
of the lenses, the Fourier transform of the distribution of theclearly separated regions in which stripes occur. These so-
field behind the sodium cell can be manipulated by the in<alled instability regions are separated by bands of wave
sertion of a transmission filter. The light transmitted throughnumbers where the unstructured state is still observed for the
the feedback mirror is used for detection. The intensity dismaximum input power available. We interpret the boundaries
tribution of the transmitted field behind the sodium cell andof the instability regions as the marginal stability curve for
its optical Fourier transform are imaged onto two chargeihe unstructured state. The minima of each curve define the

coupled devicé CCD) cameras. critical wave number and critical pump power for the thresh-
old of each instability region. Within each instability region
B. Experimental results the shape of the marginal stability curve is approximately

parabolic. The threshold for each instability region increases

The functionality of the transmission filter used in the \ith increasing critical wave number. We will label the in-
experiment is illustrated in Fig. 2. Hexagons, which occur in

the system without a filter, are replaced by stripes, which

have the same threshold and wave number, if a slit filter is 250

introduced in the Fourier spadef. also Ref.[23]). Since £ 200} o . .
every component in the Fourier space is also accompanied % v i B g

by its complex conjugate, it is sufficient to use a half-plane o2 1s0p  ® o B (A
filter instead of a slifFigs. 2c), 2(g), and Zk)]. The filter is g g = . E
positioned in order to allow the transmission of the zero- g 100¢ o ° ?; ]
order mode (minimum cutoff frequencyge,~3.6 mm ! 2 sob go ]
corresponding to about 2.5 times the%intensity radius of = _Eﬁ-“'"

the input beam at that positipand to achieve a horizontal oL, - - - -
orientation of the stripe pattern. Wave number selection is 0 500 1000 1500 2000 2500 3000

. L . . squared wave number g? (mm2
realized by a slit filter oriented perpendicular to the edge of a o (mm)

the half plandcf. Fig. 2d)]. The slit is implemented in the FIG. 3. Experimentally observed instability regions. The dotted
form of two wires of variable width, which can be moved in line connects the origin with the minimum of the first instability
the vertical direction. The width of the wires has to be caretegion (see text Parameters:T=316.7 °C, d=77 mm, py,
fully chosen in order to select a certain band of wave num-=306 hPa, andA =5.4 GHz.
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stability regions as regions 1, 2, and 3 starting at low wave 1.2 ) n
numbers. _1oF b
b :
S 08fF | .
Ill. THEORETICAL ANALYSIS - |
o a
. . 0.6} ]
A. Microscopic model £ |
The theoretical analysis for the system under consider- g 04r 1
ation is based on the microscopic model for the interaction of = 02f .
sodium vapor with light(cf. Ref. [27]). The origin of the 0.0

nonlinearity of the sodium vapor is optical pumping that pro- 0 500 1000 1500 2000 2500 3000
duces a so-called orientatiam which is proportional to the squared wave number g~ (mm™)
Iongltud_lnal component of the magnetlz_atlon of the sodium FIG. 4. Solid line represents linear stability analysis, diamonds
atoms, i.e., of the component in the direction of the lasefane wave simulations, triangles Gaussian beam simulations
beam. The properties of the transmltted_hght are governed bbf)ump rate given in the beam centenorizontal lines 1 radius

the  longitudinally ~ averaged  orientation ¢(X,y)  of the Fourier mode, dashed line analytical approximation for
= [gW(x,y,2)dz [28], which determines the complex sus- Gaussian beam, see discussion below, and the dotted line connects
ceptibility the origin with the minimum of the first instability region of the
linear stability analysis(see text Parametersiy=1.5s?, T,

s ~ NydulP[ A+ =1045¢10° 1, A=3248, D=232.27 mmMs! N=2.3

X+ =Xin(1F ¢)= 2eoil, | A211 (1% ). X 10 m~3, L=15 mm,d=77 mm, andR=99%.
Xiin denotes the linear susceptibility of the vapdy, is the E L =Rexp<—EA )E— L 5
particle number density of the sodium atoms, ang =p(L) ko - =i(L)- ©

=1.72x10 ?° Cm is the dipole matrix element of the tran-
sition. A=27A/T", is the detuning\ = v|geer vp, of the la-

ser beam with respect to the sodiudy-line normalized to
the transverse relaxation rak®, i.e., the relaxation rate of
the dipole moment of the transition. The linear absorption
coefficient of the vapor is given by :=—Kkglm(x;in)-

Under the given experimental conditions, the sodium-D  The stationary homogeneous solution of E@9—(5) is
line can be modeled as a homogeneously broaddred given by an implicit formula for the orientation, which is
—J'=L-transition with a negligible population of the ex- solved numerically:
cited statg29]. In this case, the equation of motion for the
longitudinally averaged orientation is given [®&7]

In addition, Eq.(5) takes into account the exchange of the
polarization components by the quarter-wave plate and the
losses due to reflection.

B. Linear stability analysis

2a9Lydo=Po[l—€e" 2a0L(1-¢0) _ R @ 2a0L(1~ ¢o)

X(l_e72a0L(l+¢>O)]. (6)
Py 1
Fa v¢+DA ¢+ 2aol {[P+,1(0)=P ¢(L)] The stability of the solution of Eq6) against perturbations
of the form 8¢~e*'™19°"L is determined by the growth ex-
~[P-p(L)= P p(O)]}- @) ponentu of the perturbation, which is

The pump rates-. ,(0L) of the forward and backward w=—y—Dg2— Pye 2201~ %0)(1 + Re 2@t (1+ o))

propagating beams are calculated at the entramed] and 5

the exit =L) of the medium from the corresponding com- cos( di)
Ko

_ —2agL (1= o) (1 — a—2agL(1+ ¢g)
ponents of the electric field amplitudes: RPoe (1-e )

— dq2
+Asm(k—0)

3w
T 1647 ,42(A2+1)

E.|% )

The curve of marginal stability, which is given by
The amplitudes of the electrical fields are connected by the=0, is depicted as a solid line in Fig. 4. Below the curve the

transmission through the medium, linear growth exponent is negative, the homogeneous steady
state is stable. Above the curve it is unstable.
E. (L)=exd —aoL(1-iA)(1-¢)]E, +(0), (3) The result of the linear stability analysis predicts the ex-

istence of multiple instability regions. This is expected for
_ single-mirror feedback experiments because of the spatial
E_p(0)=exd —aol(1-iA)(1+¢)JE_ (L), (4  periodicity of the Talbot effecf25,30,3]. The experimen-
tally observed boundaries of the instability regions show a
and by the free-space propagation good qualitative agreement with the marginal stability curve.
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Both show an increased damping of the higher-order insta- b) 10
bilities, which results from diffusiof25,32. e 08

The threshold pump power for a beam with a radius of S 06
1.37 mm and the critical threshold pump rate as determined 8 o4
from the LSA(Fig. 4 amounts to 44 mW, 109 mW, and 174 % -
mW for the three instability regions. This is of the same '

0.0
-5.0-25 0.0 25 5.0
position y (mm)

order of magnitude as the experimental val{@8 mW, 79
mW, and 140 mW, see Fig.,).3Also, the experimentally ob-

served wave numbers show a reasonable good agreement 0

with the LSA (see Figs. 4 and)3A complete agreement of 5 250

the absolute values cannot be expected, since the conversion g 200

of experimental values to model parameters underlies some 8 150

uncertainties. For example, the change of the pumping effi- ‘_*:z; 100

ciency due to hyperfine splitting is only accounted for by a £ -

constant factof3/16 in Eq.(2), Ref.[33]). Some deviations RN

in the wave numbers are expected due to uncertainties in the § 50 -25 0 25 50
@ wave number (mm™')

determination of the effective mirror distance resulting from
the|_|lgjveer\t/|grr,1 fk:cetr?zlt::)%ug]?:ggter;easured critical wave num- FIG. 5. Typi(?al dis_tributi_on of ori_entati_on slightly _above thresh-
bers are in good agreement with the prediction of the IineaPIOI fro.m numerical Slmulatlor?(a) orientation, (b) Vemcal. cut, (c)
- . . numerically calculated Fourier transform, ard) vertical cut
stability analysis. In contrast, the relative thresholds of th hrough Fourier transform.
instabilities do not match the expectation from the linear
stability analysis: The ratio of the threshold of the second
region to the one of the first is 2.8 in the experiment, whereas
itis 2.5 in the LSA. The corresponding numbers for the third A typical distribution of the orientatiorp obtained in a
region are 5.0(experiment and 3.9(LSA). These figures numerical simulation with a Gaussian beam slightly above
indicate that there is some additional damping for higheithreshold is shown in Fig. 5. Stripe patterns occur in a certain
wave numbers. This fact is also illustrated by the lines addedegion in the center of the beam. Their wavelengths are small
to the Figs. 4 and 3: Whereas in the data obtained from theompared to the extent of the nearly homogeneous plateau
LSA a straight line connecting the origin with the minimum present in the beam centédretween aboug=—2.5 mm and
of the first region intersects the two other minima with a highy=2.5 mm). This observation suggests a two-scale ansatz
precision(Fig. 4), this is clearly not the case in the experi- for the orientation distribution of the patterned state:
ment(Fig. 3.

D. Influence of finite size effects

2

db(x)=CDh(x)+Aex;{ — X—2> coqgoX). (7)
2w

C. Numerical results @

One questionable assumption made in the analysis is the . .
one of a homogeneous profile of the laser beam. While a The spatial scale @ of the paftern is separated from the

plane wave input is assumed in the linear stability analysi §pale of the quasihomogeneous backgrodrlx) that is

the experiment is performed with a Gaussian beam. For given _by the orientat_ion profile below thresholpl. The as-
more detailed analysis, numerical simulations were per—Sumptlon of a Gaussian envelope for the amplitude of the

formed with a Gaussian input beam and a plane wave pattern in real space is based on the observation that the
By means of Fourier filtering a stripe pattern with a cer- Fourier componentfef. Fig. §d)] have a profile, which can

tain wave number was selected analogous to the experpe very well approximated by a Gaussian distribution. The

ments. The threshold was determined by a step-by-step ignalysis of the results of the numerical simulations indicate

crease of the pump rate with a resolutioneL% of the that the widthwg, of the pattern is approximately given by

threshold value. The results of the simulations are shown iltlhe sizeAx of the area that is above threshold. Therefore, an

Fig. 4. As expected, the simulations with a plane wave input'PPer bound of the size of the pattern is then given by
reproduce the predictions of the linear analysis within the

used precision. For a Gaussian input beam, as it is used in wg P, 1z

the experiment, the threshold for pattern formation is signifi- Wp=<AX=| — 7'”(5” . ®)
cantly higher. This observation is often explained by the in- 0
tuitive assumption that a region with an extent of at least
some wavelengths of the pattern has to be above threshold W, denotes the &7 radius of the Gaussian pump profile.
for the development of a structure. In this case, the deviatiodfhe pump rate at the center of the beam is givenPgy
should be less pronounced for the higher-order instabilitywhile P, denotes the critical pump rate for the wave number
regions, since the aspect ratio increases with increasing wawkfrom the linear analysis. Inequalit{) is equivalent to a
number. Obviously, the contrary is true. Therefore, a mordower bound fow,, the 1A/e radius of the pattern’s Fourier
refined model has to be considered. component
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The lowest pump rat®,, where both criterid Egs. (9)
and(10)], are fulfilled, is the intersection point of the curves
Wq max(Po) and Wq nin(Po). It determines the threshold
pump rate in a Gaussian beam and the size of the Fourier
mode, and hence the size of the pattern. The results of the
calculation are plotted in Fig. 4 as a dashed line for each
instability region. The curves agree surprisingly well with
the results obtained from the simulations with a Gaussian

beam input. Also the agreement with the experimentally de-

?00 : v 200 400 termined instability regions is improved. The ratios between
pump rate P, (10%s™") the thresholds of the different instability region®,(P,

=3.0 andP3/P,=5.5) are considerable closer to the values

FIG. 6. Determination of the threshold in Gaussian beams. Exgiven in the experiment than the result of the usual linear
planations are given in text. stability analysis. We conclude that the procedure described

above is a suitable extension of the conventional linear sta-
bility analysis of the homogeneous state for the case of a
Wq(Po)=Wq,min(Po) = = (9 Gaussian input beam.
¢ Compared with some other previous resuitg,35 the
The area corresponding to inequali8) is hatched vertically  influence of the Gaussian beam is relatively weak in the sys-
in Fig. 6. tem under study. Essentially, it results in an increase of the

The estimate given is a lower bound for the size of athreshold of pattern formation. However, in the case of satu-
Fourier component. A mechanism providing an upper boundable media, for which the instability regions possess an up-
can be derived from the numerical results presented in Fig. €r bound(cf., e.g., Ref[32]), the presented effect may re-
The small horizontal lines at each trianghepresenting the sult in the suppression of the pattern formation.
data points stemming from simulations with a Gaussian input
beam denote the e radii w, of the Fourier modes of the

sFripe patterns. In the minima of the instqbility regions, the The presented experimental method is a powerful tool to
size of the Fourier components agrees with the width of thgjetermine the linear stability properties of the unstructured
curve of marginal stability at the respective pump rate. Bextate. It is of interest to apply the method to systems for
yond threshold, it is found that the lines representing thgyhich a linear stability analysis is not possible, because ei-
numerically calculated 1/e radii of the Fourier components ther there is no reliable model available or the complexity of
extend till the “closest” border of the instability regions that a model prevents ana]ysisl In such a case, the experimenta"y
are obtained from the linear analysis of the homogeneougptained marginal stability curves provide a first insight into
state. As a conclusion, the maximum width of a Fourierthe relevant length scales and possible competition between
mode is limited by the curve of marginal stability. Hence, andifferent instabilities. This might already give some insight
upper estimate for the width of the Fourier peaks is given byn the pattern selection process, since often some arguments
_ can be already based on the linear stability propeiiés
Wq(Po) =Wq mad Po) =min{[qo—du(Po)l,|do— dr( PO)(q.O) many of the papers cited in the Introduction

w

N
T

—_
T

width of Fourier mode w,, (mm™)
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